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Abstract—With advanced composite materials expected to appear to a greater and greater extent
in aircraft primary structure, their inherent weight-savings attractiveness is enhanced by permitting
relatively lightly loaded plate elements to operate in the postbuckied state, A theoretical
development and analysis procedure is presented for prediction of buckling, postbuckling and
crippling loads in laminated composite plates. Specific application is made to a number of simply
supported, graphite epoxy plates with geometsic and material properties corresponding to those
included in several experimental programs, the results of which, in the form of load-shortening
curves, have been reported in the literature. With the effects of transverse shear and material
nonlinearity combined with the maximum-strain failure criterion included in the theoretical
analysis, good agreement is obtained with the experimental results for initial buckling, postbuckling
stiffness and failure (crippling). The theory and analysis described herein can be used as an aid in
the design process, particularly in the isolation of candidate laminates without resorting to

extensive and costly test programs.
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{The material contained herein is based in

membrane bending stiffnesses from classical lamination theory

bending stiffness from classical lamination theory

longitudinal and transverse Young’s moduli of the kth lamina, respectively

secant modulus of the deformation theory of plasticity

equivalent elastic moduli for a laminated composite in plate axes coordinates

arbitrary displacement coefficients

subscript denoting elastic materials

vector of arbitrary x-displacement coefficients

compliance ratio factors defined by eqn (50)

Reissner integrand defined by eqn (1)

stress-cnergy density

stress-energy density of the kth lamina as a function of inplane stresses in material
coordinates

stress-energy density of kth layer of matrix material

inplane shear modulus relative to material axes coordinates

matrix material shear modulus

equivalent inplane shear modulus for a laminated composite plate relative to material axes
coordinates

laminate thickness

arbitrary inplane stress coefficients

Ramberg-Osgood type parameters for kth lamina inplane and matrix material constitutive
relations, respectively

kth lamina

plate length

number of half-buckle wavelengths in x-direction

total number of lamina

number of half-buckle wavelengths in y-direction

Ramberg-Osgood type constants for kth lamina inplane and matrix material constitutive
relations, respectively

buckling load—classical theory (without transverse shear)

buckling load—present theory (with transverse shear)

experimental buckling load

experimental crippling load

crippling load-—present theory

inplane stress resultants
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N x| matrix defined by eqn (46)

subscript denoting nonlinear elasto-plastic materials

transformed reduced stiffnesses of clasical lamination theory

stifiness ratio factors defined by eqns (41) and (42)

transformed reduced compliances of classical lamination theory

lamina thickness

matrix layer thickness (z; —z,_,)

generalized x-displacements of the polynomic expansion in eqn (43)

inplane x-direction displacement function

median surface inplane displacements of kth lamina

inplane y-direction displacement function

lateral displacement function

plate coordinates

terms of series expansion describing the x — y variations of the u displacement

distance between the plate middle surface and the laminate neutral axes in x and y directions,
respectively

median surface shearing strains of kth lamina

interlaminar shearing strains of kth matrix layer

prescribed end-shortening per unit length

end-shortening per unit length at crippling

end-shortening per unit length at buckling

fiber strain

maximum allowable fiber strain

median surface extensional strains of kth lamina relative to material axes coordinates

median surface extensional strains of kth lamina relative to plate axes coordinates

strain quantity defined by eqn (20)

coefficients of mutual influence relative to material axes

major and minor Poisson’s ratios relative to material axes

summation sign

effective stress

median surface extensional stresses of kth lamina in material coordinates

generalized stresses of the polynomic expansion in eqn (44)

median surface extensional stresses of kth lamina in plate coordinates

median surface shearing stress of the kth lamina in material coordinates

median surface shearing stress of the kth lamina in plate coordinates

interlaminar shearing stresses of kth matrix layer

INTRODUCTION

The use of advanced composite materials (ACMs) in commercial and military aircraft
introduced in the 1970s is, for the most part, based upon predictions of conservative
analysis methodologies[1] and/or the results of costly design, test, and redesign procedures.
For typical aircraft elements and components such as beam, plate, stiffened panel, and
semimonocoque structures, the properties of the fiber-reinforced matrix base material are
transformed by the classical lamination theory to equivalent elastic moduli representing
the overall laminate. Implicit in this method of design and analysis is the assumption that
the new composite part will have the same stiffness and strength characteristics as the
metallic part it is to replace. Wherein some weight saving is achieved, an optimized design
is not realized because the unique characteristics of the composite material have not been
used to full potential. That conservatism in advanced composite design exists is exemplified
by the fact that most aircraft applications appear in secondary structures, a direct
consequence of cost, confidence, and complexity problems on the one hand and an
insufficient research and technology base on the other.

A specific example of the conservative approach is the current standard practice of
designing both conventional and composite plate structures under compressive loading by
using the buckling load as an indication of structural failure. This practice ignores the
significant amount of additional load-carrying capability of postbuckled structural plates.
The end result of this practice is an increase in the weight of lightly loaded flight structures
above what is needed for safe operation, a design philosophy currently at odds with
requirements for significantly improved energy efficiency. For appreciable weight-saving
returns, the use of the postbuckling strength of laminated composite plates has direct
application to primary structure of helicopters and VSTOL aircraft operating in the low
subsonic speed range and to commercial aircraft operating in the high subsonic speed
range where loads rarely exceed about 609 of the limit load.

It should also be pointed out that laminated composites possess a number of unique
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structural behaviors that are not usually observed in metals. For instance, interlaminar
stresses can significantly reduce the buckling and ultimate loads in a laminated
composite[2, 3]. Related to this is the effect of fiber orientation and lamination sequence
on the composite strength[4]. Material nonlinearities due primarily to the matrix can lead
to stress redistribution effects in general. Other stress redistribution effects occur in
linear-elastic postbuckled plates; however, they are altered significantly by the material
nonlinearities associated with the matrix. The purpose of this paper is to generalize, and
both improve qualitatively and extend quantitatively, earlier work by Anderson and
Mayers[5] for predicting the postbuckling behavior of composite plates in the
elasto-plastic range, including the effects of transverse shear, by removing the restriction
to symmetric angle-ply laminates and incorporating a failure criterion for establishing the
point of ultimate loading (crippling) on the load-shortening curve of a given composite
configuration. The solution procedure of Anderson and Mayers is improved to the point
where the equilibrium of resultant forces acting in the plane of the plate, the boundary
conditions, and the constitutive relations between average resultant force and average
resultant displacement on any section is satisfied in the linear-elastic case; however, the
constitutive relation is satisfied only to a good approximation in the elasto-plastic case.

Finally, with regard to failure prediction, the maximum strain criterion is used and
shown to be applicable to the prediction of crippling of postbuckled filamentary laminated
composite plates. Comparisons with available experimental data show excellent agreement
for buckling, postbuckling and crippling.

THEORY

The buckling, postbuckling, and crippling of composite plates requires a theoretical
model which is both kinematically and constitutively nonlinear. The complexity of the
problem suggests the introduction of the Reissner variational approach[6), one in which
both the states of stress and strain (or displacement) can be selected independently. The
stress and strain states are each arbitrary, subject to a priori satisfaction of prescribed
conditions at the plate boundaries. The plate, shown in Fig. 1, consists of N arbitrarily
oriented anisotropic laminae of thickness #,, with the neutral axes of the laminate located
in accordance with classical lamination theory. Unlike classical lamination theory,
however, transverse shear effects are included, although no provision is made for the
occurrence of discontinuities analogous to either delaminations or debonds. With a,, o,
T, Ty» and 7, representing the components of stress, ¢,, €,, 7, ¥,,» and y,, the components
of strain, u, v, and w the components of displacement, then a function F” is defined for
the kth layer

F' = 0.8 + 098y + Toy¥Ysy + TyzVyz + TuYux — F' 0

where, within the framework of large displacement, moderate rotation kinematics, the

Fig. 1. Laminated composite plate model.
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membrane strains are
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It should be noted that these strain-displacement relations apply to each individual lamina
and terms which provide for bending in the laminate (for example, ¢, ~ 8%w/0x?) are
accounted for in the through-thickness processes inherent in basic lamination theory. The
Reissner variational principle may be stated as follows: ‘‘Among all states of stress and
displacement which satisfy the boundary conditions of prescribed surface displacement the
actually occurring state of stress and displacement is determined by the variational equation

6{.”“[ F”dV—.”‘ Py +py +ﬁ,w)dS}=0 @)

where p,, p,, and p, are prescribed surface tractions on S.”
For the present investigation, uniaxially compressed plates under prescribed end-
shortening are of interest; hence, the variational equation reduces to the form

o

Completion of the variational process implied in (8) (see Ref. [7]) shows that the vanishing
of the volume integral requires satisfaction of both the lamina equilibrium equations

oo, Or,

tf"'k (Tx-t + T}:&> + (rxxk - Txx(k _1)) =0 (9)
oo, Ot,

U, (‘5;‘ + ?) + ("m = Tyay -1)) =0 (10)

Z iz o)t (5))
GG Gt o

and the lamina stress-displacement relations given by (2)~(6). To account for material
nonlinearity in each anisotropic lamina, a modified Ramberg-Osgood[8] constitutive
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formulation is introduced. Thus, the biaxial stress-strain relations are
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where subscripts / and ¢ represent fiber direction and perpendicular-to-fiber direction,
respectively. The underlined terms in (12) and (13) correspond to the induced nonlinear
lateral strains. To establish confidence in their elasto-plastic stress-energy density for
introduction into the Reissner principle formulation, Anderson and Mayers correlated
theoretical prediction of biaxial strain response with test data obtained using off-axis
specimens in tension. The high degree of correlation obtained suggests that the strains (12)
and (13) can be approximated by setting M,= M, = 0.

For the matrix material, which is assumed isotropic, the Ramberg-Osgood relations are

taken as
1., \'»
m={Z+x (2] as)
Vex, = {Em"i‘ K a:) }k. (16)

With the definition of a suitable stress-energy density function F’, application of the
variational principle will produce both the equilibrium and stress-displacement relations.
With some modification to the form presented by Anderson and Mayers, the inplane stress-
energy density function (Fp,, ) is written as the sum of a plastic portion

7 K s
g, = {(n+1)E(€ it (2 "Vuaﬂt’f'ﬂnﬂﬂa)

K
+ @ T E, (€)™ (0} ~vio 0, + My 0%
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+ e ? e—————— c————— v (3 (lﬁ'l)
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and an elastic portion
: Ve Vo 1
1y g, = + E oo+ Gh

(""“ ) +(””‘ "“")e,t,,} (18)
k

Fo’ﬁ"k = F;mq + Fh‘;& (19)

or
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where the effective strain is defined as
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The stress-energy density in the earlier work by Anderson and Mayers does not include
the term singly underlined in (17). This additional term has been added to insure that the
reduction of (17) to an isotropic formulation is consistent with the deformation theory of
plasticity for an incompressible isotropic solid. Similarly, the singly underlined constant
in (20) must be included in the current approach as well. The doubly underlined terms in
(17), (18), and (20), not present in the earlier work of Anderson and Mayers, are required
to extend the theory from orthotropic to anisotropic materials.

For the isotropic case where E; = E, = E, Gy = Gn=G,vp=vg=v,npy=n = n, = n,
K,=K, =K, =K, then

1 0'2 c n+l
1oy Sy
F Z(E)+EK(n+l)<E) (21)
where
og5={02+07—0,0,+3tL}' 2 =Ese, (22)
Eg=—r 2 {e +€7+ ¢, +y,,} (23)
¢ ﬁ Y 4

and o4 is the effective stress, ¢, the effective strain, and E; the corresponding uniaxial
stress—strain curve secant modulus of the J, or secant modulus deformation theory of
plasticity. For the matrix material,

, 1 1
F, my =3 {G_m + G_m}k (249
K.
' = & —t (nm+1)/2
Fr,, {(nm TG, (% + 7 ) }k (25)

Fo=F, +F,

My

(26)

It can be shown that the definitions of Fy, and F,, reduce identically to the isotropic
formulation and satisfy the generalized constitutive relations (2)—(6).

MAXIMUM STRAIN FAILURE CRITERION

To predict the point of ultimate load (crippling) on a load-shortening curve the
maximum strain criterion has been introduced into the analysis. To justify the applicability
of the maximum strain criterion in the present study, reference is made to the experimental
data of Tennyson[9] with tubular composite specimens. Shown in Fig. 3 are the
experimental results of Tennyson compared with the analytical work of Craddock and
Champagne[10] for various other failure theories. The maximum strain criterion, which
was not considered in either of the other works, compares with the test data quite well
as can be observed. Shown in Fig. 4 is an enlarged plot of Fig. 3 with just the maximum
strain theory compared with test data. It can be seen that for wrap angles between 34°
and 52° the mode of failure is shear. For angles less than 34° or greater than 52° the mode
of failure is transverse tension.

If, however, the matrix material were to be highly nonlinear (which is often the case)
then the “shear” curve would rise and transverse tension would be the principle mode of
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failure. For angle-plies greater than = 40°, it is noted thdt'tlie data appear shifted by about
2-4°, This is most likely due to manufacturing tolerances in the wrap angle. In tests
performed at Ford Aerospace for a similar size tube and graphite epoxy tape it has been
found that tubes supposedly belt wrapped at 60° were observed actually to have a wrap
angle of 56-58°[11). When these adjustments are made to the test data, then the correlation
with the maximum strain theory is almost exact over the entire range of wrap angles. The
test results discussed so far have concentrated on failure associated with the matrix
material itself. In the case of the fiber the most commonly observed failure mode is uniaxial
tension. Indeed, all the various failure theories produce the same predicted failure load
when the load is aligned with the fiber.

The maximum strain failure criterion, like the other failure criteria, is phenom-
enological in nature. That is to say, the exact mechanism (or physics) of failure is not
treated; rather, the observed behavior is modeled with gross macroscopic measureable
responses. In this context, the worth of any failure theory must be determined by
comparison with actual test data. The maximum strain failure criterion seems to perform
very well for laminated composites in which both fiber and matrix are relatively brittle.
As pointed out by Grimes and Whitney[12], the maximum strain failure criterion should
be accurate as long as the nonlinear shear strain components are small and do not interact
with normal strains.

It should also be noted that the maximum strain failure criterion is operationally simple
to use, requires the availability of only limited test data, and can be used to predict the
actual mode of failure; that is, fiber failure or matrix failure in tension or shear. Other
failure theories based upon strengths (for instance, Tsai and Wu[13]) produce a failure sur-
face for which no physically plausible failure mode can be associated. For relatively ho-
mogeneous but orthotropic materials such as ATI-S or pyrolytic graphite, etc. the tensorial
theories based on strength are generally more accurate.

APPLICATION TO A SPECIALLY ORTHOTROPIC
LAMINATED COMPOSITEPLATE

The analysis undertaken is concentrated on specially orthotropic plates and plates
which can be considered as reasonably specially orthotropic (D,/D,; and
D,/ Dy, € D/ Dyy). Reliable experimentally determined load-shortening curves including
prebuckling, buckling, postbuckling, and crippling data, exist only for such plates as
exemplified by the investigations of Spier es al.[14-18].

The use of the Reissner variational theorem provides differential equations of
equilibrium and stress-displacement compatibility that must be integrated over the volume
of the plate. As a consequence, in effecting an approximate solution, both the equilibrium
and stress-displacement equations are satisfied over the volume but not necessarily at a
point. If it were possible to construct the exact solution for both stresses and displacements,
then equilibrium and stress-displacement equations would also be satisified at every point.
In application to a uniformly compressed plate with straight unloaded edges, it is observed
that along any x = constant or y = constant line, including the plate edges, the internal
resultant forces (N,, N,, N,,) are given by

Pbl N

N,=| ; Y. 6., dy = constant 27
Jo ey
"LI N

N,= -Za,%dxao (28)

’ J0 hk-l *

’&1 N LI N

Ny= h Z Tanlim, &Y =I h E txntﬁﬁgdx=0' 29
Jo Msh o hidh

Judicious choice of stress and displacement functions is essential in applying the variational
formulation of Reissner; however, a firm judgment as to the accuracy of the solution can
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only be made by comparison to other established numerical techniques. For instance,
Anderson and Mayers[S] used mathematically rather than physically desirable membrane
functions, thereby only approximately satisfying the membrane displacement boundary
conditions and the statics conditions (27)-(29). As a result, their solutions fell short of
exact static equilibrium satisfaction along all x and y cross sections of the plate, a lack
of rigor removed in the present application. Nevertheless, solution acceptability was guided
by correlation of results for the predicted ratio of postbuckling stiffness to initial stiffness
with established results obtained from load-shortening curves for isotropic and angle-plied
(= 6) laminated plates.

The kth lamina displacement functions for a simply supported plate with straight
unloaded edges free to move in the plane of the plate are

wy = &x + ensin-—zmcosg-nzy— + zkezxsinmcosm 30)
L b L b
. 2nn 2mnx , N mnx
v=Siy +f,;sm—-b-—)—’cos——L- +z,,f2,sm~—b—ycos——i—— 3hH
n
w = g; COS m{—f cos —? (32)

where e,;, fi;, f12, ¢tc. are unknown amplitude coefficients to be determined from the
variational analysis. These functions are required in order to insure that the desired
geometric boundary conditions are satisfied; i.e.

w=10(L2) at x=+L/2 (33)
ve=1fu(b/2) at y=1b/2 (349
w=0 at x=+L/2,y=1b/2 (35)

The kth lamina stress functions are

2nny mnx  nmy nrny
0, = Sx‘ (h]" + huzcos_b"' + h‘u COS ~wm T e COS b ) (])Zkh[n COS_L" CcOos (36)
2mnx mnx  nmy 0, mnx _ nmy
g, =S89 hmcos-—-z— + hyc08 —— Ay 5 + 85, ,‘hz,,cos-z—-c § e 3 37
2mex . 2n mnx
To =S5 (h,“ $in ——— T sin : y) + 89 2k sm—-z-— sin n:y (38)
. mrx  nm
1, = bz sm—L— cos 7})- (39)
. Nnm mnx
Tex, = G112k smTy COST (40)

where the A,;s and a;;, b,, are determined from the variational procedure and provide for
satisfaction of eqns (27)+(29) in the process.

The combination of displacement and stress functions given by eqns (29)-(32) and
(36)—(40) represents the most limited set that can be chosen and which still satisfies both
geometric boundary conditions and overall membrane equilibrium conditions while
providing for the maximum amount of coupling of displacement and stress distributions
in the Reissner functional (1).

The quantities S©, S, §O, 57, S}, S, are stiffness ratio factors introduced to
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render the stress distributions applicable to layups other than those reflecting + 6-degree
fiber orientations. With the stiffness ratio factors each equal to unity, the stress distribu-
tions are valid only for isotropic media and * @-degree orthotropic layups, the restriction
on the postbuckling analysis conducted by Anderson and Mayers[5}. Thus, the present
development represents still another significant improvement of the earlier work to
encompass a much wider class of composite laminates.

It should be noticed that when the stiffness ratio factors are unity each layer is assumed
to have the same level of membrane stress with the bending contribution being a linear
function of z,. For a general laminated composite this cannot be true. In Fig. 2, a schematic
of the strain and stress distributions through the thickness of a typical laminated composite
are shown. The strains are assumed to be the sum of a membrane and a linear bending
component. However, the stresses are neither linear nor uniform because the stresses are
a function of the stiffness of the lamina in that particular direction. Thus, to account for
the difference between the actual lamina stress and the assumed laminate average stress,

U AN N = N
A B B

€ g € g

BENDING MEMBRANE

Fig. 2. Typical lamina stress and strain distribution.

CRITERION

MAXIMUM STRAIN
———— MAXIMUM STRESS
—_—— TSAI-WLU BUADRATIC [13)
——— TSAI-WU CuBIC (13
.................. HOFFMMAN'S (23]

FAILURE PRESSURE (KSi)

A 1 1 1 1 1 A 1 J
0. 20, 30, 40. 50. 80. 70. 80, 90.
PLY ANGLE (DEG)

Fig. 3. Comparison of various failure criteria.
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A TEST DATA (9]
15

10

\m.___....-t.

FAILURE PRESSURE (KS!)
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Fig. 4. Comparison of maximum strain criterion with test data from [9].

the stiffness ratio factors

SO =%‘-'-)—-*{'-, cee 41)
n
01?12
Sﬁ? = (_Q.“_)ﬁ“}_’_/._' . 42)
1

are introduced as shown in eqns (36)-(40). An alternate procedure would be to take the
h,;s and a,,, by, different for each lamina, thus increasing significantly the number of
variational equations required to effect the solution.

As in Anderson and Mayers{5], following the approach of Durlofsky and Mayers[19]
based on their generalization of the sandwich plate model of Hoff[20], the through-
thickness variations are taken as polynomic expansions in z

IS CA WS A WS 3)
h h

N AT I A
o,=0y+ 7 U+ % o +.. .. 44)

In vector-matrix notation, the spatial distributions and unknown amplitude coefficients are
written, for example, as

i = Pae (45)
where
1z, 23 ... 2{-®
po|! oo BT 46)

b ozy 23 ... zZ%Y
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and N = number of lamina. Also

a2 Ay
0210022° " A2y 47

R
Il

A1 Am2" Ay,
where am,,, are the spatial distribution functions in (30)~(32), and
é= {eueu' e €216 " €2 CmiCny” " " Cour, } (48)

It is also noted that the application of the Reissner variational theorem leads to the lamina
stress—strain relations being established in terms of compliances; that is,

€y = (Su)k”x,, + (S0 w + (st)kfxy,~ 49)

The lamina summation process leads to a summation of compliances for each laminate.
In general, the summation of lamina compliances cannot yield the correct laminate
compliance; thus to account for this possible discrepancy, the energy in each layer must
be adjusted by the compliance ratio factors.

gl ank’ <, b
L ap B @ iy o
S 7 N R A L A T T W T TA W

For a nonsymmetric laminate, generalization of the work of Anderson and Mayers
requires redefinition of the P matrix defined in (46). In Ref. (7], the matrix is developed
on the basis of the assumption that the middle surface of the plate is coincident with the
neutral axis of the laminate. For isotropic materials, unidirectional and symmetric angle
ply (£ 0) laminates this is indeed true. However, for nonsymmetric laminates, the neutral
axis and middle surface are not coincident; thus, a proper accounting of the stress
distribution requires that 7 be defined as

1 z,—-4 (zl_A)2 (Z,—A)("'l)
1 z,—4 (Z—4P - (z—4)N-?

Pei E s (51
1 zy—4 (zy—A4P -+ (zy—4)N-Y

where 4 is the distance from the middle surface of the plate to the neutral axis of the
laminate. Additionally, it is noted that the location of the neutral axis in the x-direction
may be quite different than the location of the neutral axis in the y-direction. Thus, it is
necessary to define analogous terms B,, P,, A,, 4,.

RESULTS AND DISCUSSION

The preceding theoretical developments have been programmed on a CDC 7600
computer in order to perform the calculations. To check the accuracy of the linear-elastic
theory many different laminate configurations and rectangular plate sizes (including
square) have been analyzed. In all such cases, the transverse shear modulus has been set
arbitrarily large (that is G,,/G,, ~ 0) in order to remove the effects of transverse shear and
allow comparison with the classical theory for laminated composites (see, e.g. [21]). The
results are summarized in Fig. 5 which shows the quantity (N“/N5) where N¢ is the
calculated buckling load of the present theory and N is the classical buckling load. These
results are plotted as a function of the number of inplane integration points used in
evaluating the assumed stress and displacement distribution functions. It is noted that the
present theory is a least 99.3% accurate for 5 or more integration points per quarter wave
of the buckled shape and 12 layers or more. In other words the present theory shows that
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Fig. 5. Convergence of solutions.
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Fig. 6. Effects of transverse shear on initial buckling.

for 5 or more integration points per quarter wave, N“/N5—1 as the number of layers
approaches infinity.

To establish the effects of transverse shear, a comparison of N5/NZ for various b/t
ratios is shown in Fig. 6. N¢ refers to the buckling load without the transverse shear effects
whereas N¢ refers to the buckling load with transverse shear effects included. A composite
layup taken from Spier[14] has been chosen to compare with the results for an isotropic
plate. As can be seen in Fig. 6, the effect of transverse shear can be significant for composite
plates with b/t ratios as high as even 50. It is also noted that the effect of the transverse
shear depends upon both the particular layup and the number of buckle half-wavelengths.
The former can be related to the ratios of E,,/G,, E;/G,, and G,,/G, of the overall
laminate; the latter, as in the case of conventional beam and plate structures, depends on
the total thickness to wavelength ratios.

It is of extreme interest to note that Spier has stated *. . .in certain tests, the ultimate
loads were less than the corresponding theoretical elastic buckling loads, exposing the
futility of using classical buckling theory for laminated plates”[15]. The magnitude of
transverse shear effects established through application of the current theoretical analysis
justifies Spier’s observation. Just how well nonclassical buckling analysis and experiment
correlate is demonstrated by the data presented in Tables 1-3. The predictions are those
of the present study; the experimental data are those given by Spier in Refs. [14-18].
Whereas the ratio N{'/N¢/ ranges from 0.50 to 0.93, the ratio Nf/N¥ ranges from 0.76
to 1.12. Furthermore, if the test corresponding to N7/N“ = (.76 were to be eliminated on
the basis of being a questionable point, the range for N{/NJ would be 0.89-1.12. Thus,
it seems reasonable to conclude that, within the range of scatter to be expected in
conducting laminated composite plate testing, the present theory and analysis procedure
adequately predict buckling loads for composite plates in the linear elastic range.
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Table 1. Predicted buckling loads compared with test data from Ref. {14]
Buckling Load (KIP’S) N§T /NG Nir/Ne
SPECIMEN Theory Theory Theory Theory
D b/t  Test (Classical) (With Shear) [Classical) (With Shear)
3-51 339 295 312 2.84 oM 1.04
3-52 337 295 3.20 2.91 .92 1.01
4-51 415 245 257 2.38 85 1.03
4-52 407 255 2.74 2.52 .03 1.01
7-51 329 282 3.30 2.90 .85 .97
7-82 329 3.00 3.68 321 82 91
Table 2. Predicted bukling loads compared with test dats from Ref. [15]
Test Buckling Load (ib) Ni* NS Ni*/NT
SPECIMEN B L b t bt i) Theory Theory Theory Theory
NUMBRR Gin)  Gn}  (in) {18]  {(Classical) (With Shear) (Classical) (With Shear)
2A 4 80 2002 .0630 318 3,000 3,786 3,252 a9 2
2D 4 80 2001 .0642 312 3,260 4,000 34 ".81 95
ac 4 80 2002 .0617 325 3,250 3,556 3,072 91 1.06
£A 8§ B0 2001 .0838 238 630 8,615 6,757 73 93
4B 8§ 80 2001 .0821 244 6,400 8,101 6,408 ] 1.00
4C 8 80 2007 .0849 236 6350 8,935 6,972 n 91
6A 12 80 2001 .130 194 10200 15307 11,020 .56 03
6B 12 80 2001 .1052 19.0 10,300 16,405 11,500 .63 80
§C 12 80 2004 131 194 132400 15423 11,037 .80 112
1A 4 120 3000 .0614 466 2,300 2,607 2,506 85 92
1D 4 120 3000 .0644 466 1,900 2,680 2,198 T 76
1 4 120 3000 .0642 467 32,250 2,672 2,484 84 o1
3A $§ 120 3000 .083¢ 359 5,100 5,682 5,086 90 1.00
3B 8 120 3000 .0867 346 53200 6,363 5,627 82 .
3C 8 120 3000 .0860 340 5,700 6,210 5,502 92 1.04
5A 12120 3000 .1057 284 9,250 11,008 9,356 .83 .
5B 12 120 3000 .1066 281 10400 11,383 9,572 K 1.00
5C 12 120 3000 0880 306 8,000 8,845 7,625 20 1.05
Table 3. Predicted buckling loads compared with test data from Refs. [17, 18}
Buekling Load (Ib) N /NG Ne* NE
SPECIMEN Test Theory Theory Theory Theory
NUMBER b/t (1)  (Classical) (With Shear) (Classical) (With Shear) Layup
sn-N{xs] 239 7,710 9,500 7,454 81 1.03 {45/0/ — 45/90),,
s{\-N, 18] 370 5800 8,000 5,381 93 1.04 {45/0/ ~ 45/90}s,
Fig. 6of 124 10,600 21,400 10,176 50 1.04 {145,/0“/ # 45)r
(17]
Fig. Tof 382 4300 5000 4,480 86 98 {45/0s/ — 45/0,],
f17]
Fig. 10 of 18 8,300 13,300 8,675 .82 96 [0¢/ & 454},
(7]
Fig. 10of 28 7080 8,549 8,987 83, - 101 106/ £ 454),

117]




876 R. R. ARNOLD and J. MAYERS
Table 4. Predicted fiber strains at experimental value of crippling load

b/t Layup (8/8c)e  NiP/NT N[N ¢ (%)
32 [£45/90/04), 2.8 97 106 -1.2
41 [245/0,/90], 34 10t 895 —14
34 [x45/0,/80], 26 1.0t 85 -1l
37 [45/0/ — 45/90];, 2.1 1.04 107 -08
38 [45/0,/ - 45/0s, 3.0 96 98 -08
28 [£45/0), 18 1.0 103 -10
36 [£45/04), 2.4 1.00 162 -1l

To the extent that cldssical theories can account only for linear material behavior, the
validity of the present theory, specialized to linear elastic considerations, is established.
However, verification of the theory for nonlinear material effects is required. In this regard,
the earlier work of Anderson and Mayers[5), in which both isotropic and symmetric
angle-plied composites are examined, has confirmed the validity of the current nonlinear
material model for at least these cases. Indeed, the present theory reduces to that of
Anderson and Mayers for the special cases cited above. For more complex laminated
constructions, that is, nonsymmetric and arbitrarily angle-plied laminates, the present
theory in its full extent is required. Fortunately, the recent work by Spier et al.[14-18]
provides the necessary experimental data to verify both the general applicability of the
present buckling and postbuckling theory and establish a criterion for the prediction of
ultimate (crippling) load.

Given in Table 4 are comparisons of theory and experiment for 7 of the 13 experimental
load-shortening curves presented by Spier et al.: six of the load-shortening curves are not
considered as the respective test specimens reflect plates which either are too thick
(b/t < 18) or duplicate closely one or more of the seven selected. As can be seen, the ratio
of experimental and theoretical results for initial buckling and crippling, respectively, are
in excellent agreement in consideration of the scatter to be expected in the testing of
laminated composites. The theoretical crippling load has been determined as the load
corresponding to the (8/4,,), of the experiment and for which the fiber strain shown in the
last column of Table 4 satisfies the criterion 0.8%; < ¢,,, < 1.2%, the range in which all
seven of the test plates fail. Conversely, in the absence of an experimental curve, the
prediction procedure would be to construct the theoretical load-shortening curve N/N¢
versus 8/6,, to the point where the calculated maximum fiber strain exceeds 1.0 in
compression. It is important to note that the typical B-basis allowable strain (95%
confidence, 909 probability) presented in Ref. [1] is 0.83% in compression and 1.15% in
tension. Thus, for design purposes, it is recommended that a maximum compressive fiber
strain of 0.83% be used in place of the 1.0%.

Comparison of theory with experiment for actual load-shortening curves taken
from Spier[14] are shown in Figs. 7-13. The analytical results for the actual nonlinear
material behavior are shown with the symbol ( x ). Only three calculated points in addition
to the initial buckling point are determined in view of the relative smoothness of the
experimental curve and in the interest of minimizing computational cost. Roughly
speaking, the difference in costs between producing a linear-elastic point and an
elasto-plastic point is two orders of magnitude.

The final calculated point possesses the same 8/8., value as the experiment using,
as shown, e.g., in Fig. 7, the abscissa intercept corresponding to an initial prebuckling
slope of E;, = 11.1 x 10° psi, the laminate modulus obtained by Spier through the material
testing phase of the experimental program. In view of the data compiled in Table 4 and
the typical load-shortening curve correlations obtained in Figs. 7-13, the agreement with
Spier’s test results can be considered exceptionally good. Nevertheless, it should be pointed
out that the plates treated analytically possess straight unloaded edges whereas the
experimental plates reflect stress-free unloaded edges. However, the linear-elastic analyses
of Banks et al.[22] for cross-plied reinforced plastic plates having both types of boundary
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Fig. 8. Predicted load-shortening curve compared with test (specimen 4-52).

conditions along the unloaded edges show that load-shortening curves are essentially the
same in the early postbuckling range (1 < §/8,, < 3). The load-shortening curve in Figs.
7-13 and the data of Table 4 are all in the range 1 < 8/5,, < 3.4. Thus, it would appear
that it is consistent to compare results of the present theoretical analysis with the
experimental work of Spier.

In retrospect, both the qualitative and quantitative nature of the correlation of
experimental and theoretical results appear to be quite satisfactory. Obviously, some
scatter in the test data is to be expected when dealing with composites. As to the theoretical
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model itself, the results demonstrate that it is quite capable of recognizing and dealing with
all macroscopic kinematical and constitutive effects on plate buckling, postbuckling, and
crippling. Certainly, it can be used to identify for the designer those configurations which
maximize both initial buckling and crippling loads. Although the particular analyses
carried out apply to laminates made of one fiber/matrix system, the theoretical model is
capable of treating hybrids (e.g. a combination of graphite and Kevlar epoxy laminae).
Finally, it is observed that the mixed variational principle of Reissner, as modified herein
to account for elasto-plastic behavior of composites, demonstrates excellent convergence
with a near minimum of free variables in the displacement -and stress distributions.
Specifically, it is noted that all solutions have been effected with only one term in the
out-of-plane deflection function.



Buckling, postbuckling, and crippling of materially nonlinear laminated composite plates 879

A%~
LAYYP: [MSIOS)s
. Pog
h(w
[
[N
X L
2
9
(% =4
L — TEST (151
/ * THEORY
6
«11.5x10 1
o.

2. 4. 6. 8 K.
DISPLACEMENT  {xO0.O1 IN.)

Fig. 11. Predicted load-shortening curve compared with test (specimen 5B).

=T
LAYUP: [45/0,/-45/0,],
5
8. Pec B - // e P
[ LAvuP: [4570/-45/90, - oy
i ’
/
» » /,
=3 @ & /
_ L Y, L e P
& 4 4. b
2 2
a /
Q <4 |
§ =af —— TEST 18] 2b [l — tesT mn
S % THEORY / % THECRY
3
P e . 6
z"’* en‘a,axu‘; psi‘ L lj‘:“ li.?x]oLpsi L
a 2 a, 5. e. o 2 a. 5.
DISPLACEMENT  (x0.0% INJ) DISPLACEMENT  (x0.01 IN}
Fig. 12. Predicted load-shortening curve compared Fig. 13. Predicted load-shortening curve compared with
with test (specimen 5A-N). test (specimen F7).
CONCLUDING REMARKS

The theory and available experimental data presented herein show that composite
plates have significant postbuckling strength which can and should be utilized in the design
process for achieving improved structural efficiency in primary structure. For example,
aircraft panels which have compressive loads applied could be designed on the basis of
using the ultimate rather than the buckling strength of the panel as the allowable in order
to achieve appreciable weight savings. For helicopter fuselage structure and commercial
airplane fuselage and empennage structure, load intensities are relatively light; thus, the
concept of permitting some buckling and postbuckling at and beyond limit load is not
without some justification. Since the material behavior of fiber-reinforced laminated
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composites is fundamentally nonlinear, theory and analysis capability has been made
available to accurately predict buckling, postbuckling and crippling of composites plates.
The theory and analysis developed herein, which both improves and extends earlier work
of Anderson and Mayers[5], when combined with the maximum strain failure criterion
provide the capability as demonstrated by close prediction of available experimental results
providing load-shortening curves to failure. In addition, the transverse shear effects
included in the current theory and analysis have resolved to within +10% the large
discrepancy between the classical buckling criterion and experimental results for initial
buckling on thirty composite plates.

Acknowledgement—The authors acknowledge with deep appreciation the key contribution of Edward E. Spier,
General Dynamics/Convair Division, in establishing experimental buckling, postbuckling, and crippling data for
a wide range of graphite/epoxy composite plate structures, the absence of which would have rendered the
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